An assessment practice guide
Quality teaching in ACT schools
This publication is a reproduction of the NSW Department of Education and Training publication, *Quality teaching in NSW public schools: A classroom practice* (2nd edn, 2006) with some minor changes by ACT Department of Education and Training. The State of NSW through the Department of Education and Training owns the copyright in the publication and has licensed the publication (with changes) to ACT Department of Education and Training for use in ACT schools.

© NSW Department of Education and Training, 2006

This work is subject to copyright. Apart from any use as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without written permission from the NSW Department of Education and Training.

Produced by Publishing Services for the ACT Department of Education and Training

Copyright related enquiries about this publication should be directed to:
Professional Learning and Leadership Development Directorate
NSW Department of Education and Training
Level 7, 35 Bridge St SYDNEY NSW 2001

All other enquiries should be directed to:
Curriculum Support and Professional Learning Directorate
ACT Department of Education and Training
GPO Box 158
Canberra ACT 2601
Phone: (02) 6205 9205

Publication No 07/1643
Contents

Acknowledgements 4

Introduction 5
 - Using the guide 6
 - A note about assessment 6

Quality teaching makes a difference 7
 - Research background 7
 - The Quality Teaching model 9

Structure of the document 10
 - Using the coding scales 12

Dimension 1 : Intellectual quality 15
 - 1.1 Deep knowledge 16
 - 1.2 Deep understanding 18
 - 1.3 Problematic knowledge 20
 - 1.4 Higher-order thinking 22
 - 1.5 Metalanguage 24
 - 1.6 Substantive communication 26

Dimension 2 : Quality learning environment 29
 - 2.1 Explicit quality criteria 30
 - 2.3 High expectations 32
 - 2.6 Student direction 34

Dimension 3 : Significance 37
 - 3.1 Background knowledge 38
 - 3.2 Cultural knowledge 40
 - 3.3 Knowledge integration 42
 - 3.5 Connectedness 44
 - 3.6 Narrative 46

Appendix 49
 - Coding sheets 50
Acknowledgements

This guide is the direct result of the guide developed by the NSW Department of Education and Training for NSW public schools. The NSW Department of Education and Training retained the services of Associate Professor James Ladwig and Professor Jennifer Gore, as authors of the guide. The ACT Department of Education and Training made minor changes to the guide so that it was contextualised for ACT schools.

The coding scales and other notes in the guide have been informed by research reported in *Quality teaching in ACT public schools: An annotated bibliography* (ACT Department of Education and Training, 2008). In particular, the coding scales are derived from earlier articulations of many elements of the model in studies conducted by Professor Fred Newmann and associates on “authentic pedagogy” (1990-95) as part of the CORS (Center on Organization and Restructuring of School) research agenda, and Dr James Ladwig and Professor Bob Lingard (project directors) on “productive pedagogy” (1998-2000) as part of the QSRLS (Queensland School Reform Longitudinal Study). The coding scales provided in this guide build on, but substantially revise, these earlier elaborations.
Introduction

This guide has been developed to support school leaders and teachers in their implementation of the Quality Teaching model in relation to assessment practice. In the Quality Teaching model, pedagogy is understood as being constituted by both classroom practice and assessment practice, given that students’ experience is shaped both by what happens in classrooms and by what they are asked to do by their teachers. This document’s focus on assessment practice complements the focus of the documents on classroom practice.

In November 2007, the ACT Minister for Education and Training launched the new ACT curriculum framework for preschool to year 10, *Every chance to learn*. The framework describes an approach to pedagogy, based on the Quality Teaching model developed by the NSW Department of Education and Training, that serves to underpin the implementation of curriculum in ACT schools.

The Quality Teaching model describes an approach to pedagogy that can be applied from preschool to year 12 and across all key learning areas (KLAs), subjects and school contexts. The Quality Teaching model can be used by school leaders and teachers to focus and support a long-term strategic approach to improving the quality of pedagogy in ACT classrooms.

The three dimensions and 18 elements of the Quality Teaching model represent a synthesis of reliable research that empirically links these general qualities of pedagogy to improved student learning. One of the strengths of the model is that it synthesises general characteristics of pedagogy, thus making it applicable across KLAs, subjects and years of schooling. In so doing, the model offers a coherent framework for addressing pedagogy on a school-wide basis.

This guide has been written to assist ACT schools in building a shared vision. It provides an elaboration of the elements of the model to assist teachers and school leaders to talk about assessment practice and to understand what constitutes quality teaching. The elaboration includes specific descriptions, a coding scale, notes and suggestions, all designed to help clarify what it means to assess well in relation to each element.
Using the guide

This guide is organised around 14 of the 18 elements of the Quality Teaching model. Engagement, social support, students’ self-regulation and inclusivity are not included as coding elements for assessing tasks as these will be observed only in the context of implementing a task, and are best observed as elements of classroom practice [refer to A classroom practice guide].

The primary purpose of this guide is to support teachers’ professional learning and professional dialogue. To this end, the guide can be used in two main ways.

First, it is intended to guide teachers’ reflection and analysis, where teachers, individually or in groups, can use the guide to analyse current assessment materials in order to understand how those materials might be improved. Such analysis can focus on any written assessment task.

Second, the document can be used to guide the planning and redesign of assessment tasks. Again, working together or individually, teachers can consider how each element might influence their planning of assessment tasks in order to maximise students’ learning.

It is important to reiterate that the purpose of this guide is to support teachers’ professional learning and practice. The coding process described in this guide should be used only where teachers have agreed to its use in relation to their work. The guide is not intended to be used for the purpose of teacher assessment. Any use for this purpose has the potential to undermine its value in supporting teacher professional learning and dialogue.

A note about assessment

Discussing and understanding Quality Teaching in relation to “assessment practice” requires a common and accessible starting point. For this reason, assessment practice will be analysed with reference to written assessment documents. Written documents can be either materials prepared for assessing students, such as homework tasks, in-class tasks, “rich” tasks, research projects, design projects, performance tasks, classroom tests and formal examinations; or the transcripts of classroom activities designed for the purpose of producing evidence of student learning. Tasks can refer to short-term one-off activities or, as in some of the examples included in Continuing the discussion about assessment practice, long-term multi-dimensional projects.

The assessment practices of teachers are clearly much broader than the written materials they use for assessing student achievement and progress. The restricted definition of assessment used in this guide, however, provides a specific pathway into improving assessment practice in general, as a key aspect of quality pedagogy. That is, the careful analysis of written assessment materials in relation to the dimensions and elements of the Quality Teaching model is designed to assist reflection on broader assessment issues, including informing ongoing teaching and learning, developing assessment frameworks, and the strategic collection and recording of evidence of student achievement.
Quality teaching makes a difference

Research has consistently shown that it is the quality of teaching that most directly and powerfully affects the quality of learning outcomes that students demonstrate. ‘Pedagogy’ is the term commonly used to describe the art and science of teaching. Pedagogy can be seen in the activity that takes place in classrooms or other educational settings and in the nature of the learning and assessment tasks set by teachers. Pedagogy recognises that how teachers teach and assess is inseparable from what they teach and assess, who their students are and how students learn.

Research background

There has been a long history of research that has attempted to identify teaching practices that will improve students’ learning. However, it is only recently that diverse research traditions have come to a common understanding of quality pedagogy. It has taken a long time to reach this consensus because it has been difficult to isolate the independent effects of any one specific teaching technique or learning skill, and therefore difficult to implement any specific technique in a school-wide way. As a result, researchers began to seek out ways of identifying more general characterisations of pedagogy.

More general characterisations of pedagogy, such as

Authentic Pedagogy

and

Productive Pedagogies

allow educators to focus on underlying dimensions of pedagogy that have meaning in real classrooms, can be sustained organisationally by schools, and have demonstrated positive effects on learning outcomes for all students.

A substantial body of research linking pedagogical practices to improved student learning outcomes supports each of the three dimensions of the Quality Teaching model. Research has demonstrated that pedagogy focusing on high levels of intellectual quality benefits students, whether they are high or low achievers, from backgrounds typically identified as educationally disadvantaged or privileged, or identified as gifted and talented or with special needs in mainstream classes. The positive effects of high levels of intellectual quality have been found to influence individual student outcomes on both performance-based assessment measures and conventional standardised achievement tests.

Research has also soundly demonstrated the importance of a quality learning environment. Research into effective teaching, authentic and productive pedagogy, teachers’ expectations, students’ time-on task and student engagement has consistently demonstrated that classrooms in which there is a strong, positive and supportive learning environment produce improved student outcomes. While many teachers are justifiably concerned with improvements in the learning environment of their classroom as an end in itself, it is also important to recognise that a high quality learning environment has its own independent effect on the quality of work students are able to do.

The third dimension of pedagogy identified in the Quality Teaching model represents a synthesis of research into the means through which teachers make learning

1 For a more detailed analysis of the research background to the model presented here refer to Quality teaching in ACT schools: An annotated bibliography (2008).

meaningful and important to students both as individuals and as members of social groups. That is, pedagogy that promotes intellectual quality and produces a quality learning environment also requires some means by which teachers link the work of their students to personal, social and cultural contexts outside of the classroom. For the work of students to have meaning and impact beyond the classroom, pedagogy must make it clear that students’ learning matters. The third dimension of high quality pedagogy is that learning is seen by students to have significance.

Figure 1 below illustrates the relationship among the three dimensions of pedagogy in the Quality Teaching model. There are two ideas this diagram intends to convey. First, intellectual quality is central to pedagogy that produces high quality student learning outcomes. Second, all three dimensions are essential for students to benefit from high intellectual quality work.

![Figure 1: Three dimensions of Quality Teaching](image-url)
The Quality Teaching model

The Quality Teaching model has three dimensions that represent classroom and assessment practices that have been linked to improved student outcomes. These three dimensions are:

1. Pedagogy that promotes high levels of **intellectual quality**.

 Intellectual quality refers to pedagogy focused on producing deep understanding of important, substantive concepts, skills and ideas. Such pedagogy treats knowledge as something that requires active construction and requires students to engage in higher-order thinking and to communicate substantively about what they are learning.

2. Pedagogy that establishes a high **quality learning environment**.

 Quality learning environment refers to pedagogy that creates classrooms where students and teachers work productively in an environment clearly focused on learning. Such pedagogy sets high and explicit expectations and develops positive relationships between teachers and students and among students.

3. Pedagogy that generates **significance** by connecting students with the intellectual demands of their work.

 Significance refers to pedagogy that helps make learning more meaningful and important to students. Such pedagogy draws clear connections with students’ prior knowledge and identities, with contexts outside of the classroom, and with multiple ways of knowing or cultural perspectives.

Each of the three dimensions of the Quality Teaching model is comprised of six elements. The 14 elements that pertain to assessment practice are presented in Table 1.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Intellectual quality</th>
<th>Quality learning environment</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep knowledge</td>
<td></td>
<td></td>
<td>Background knowledge</td>
</tr>
<tr>
<td>Deep understanding</td>
<td></td>
<td></td>
<td>Cultural knowledge</td>
</tr>
<tr>
<td>Problematic knowledge</td>
<td></td>
<td></td>
<td>Knowledge integration</td>
</tr>
<tr>
<td>Higher-order thinking</td>
<td></td>
<td></td>
<td>Connectedness</td>
</tr>
<tr>
<td>Metalanguage</td>
<td></td>
<td></td>
<td>Narrative</td>
</tr>
<tr>
<td>Substantive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>communication</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The dimensions and elements of the Quality Teaching model relevant to assessment practice.
Structure of the document

Each of the 14 elements of the Quality Teaching model for coding assessment tasks is elaborated and set out as shown below.

Description
Each element is described in general terms to indicate what might be observed when the element is highly evident, as opposed to what might be observed where there is little or no evidence of the element in an assessment task.

Coding scale
Each element is broken down into five “codes” or “scores”, with a descriptor given for each one. The 1–5 coding scale draws upon observable aspects of assessment practice, and hence makes distinctions between, for example, none, some, and all of the task; or minimally through to substantially.

The codes or scores provide the basis for professional reflection and dialogue. Coming to a shared understanding within a school, or among groups of teachers, is in itself an important part of the professional learning process in relation to the Quality Teaching model. Being able to name and identify each element is important in improving practice. Developing a deep understanding of each element as it relates to assessment practice can be enhanced with the elaboration provided in these coding scales.

Notes
Notes are provided for each element to highlight certain reminders for teachers and in response to commonly asked questions about the meaning and application of the element, especially as it applies to assessment practice.

Suggestions
While teachers should aim for a high score in all three dimensions on all assessment tasks, it is unrealistic to expect that every task will score highly for every element. Nonetheless, we encourage teachers to consider what it might take to move to the higher scores for each element. The suggestions provided in relation to each element offer some ideas for moving to the higher scores.
INTELLECTUAL QUALITY

1.1 Deep knowledge

Description

Knowledge is deep when it concerns the central ideas or concepts of a topic or subject and when the knowledge is judged to be crucial to the topic or subject. Deep knowledge is evident in a task when students are required to address the centrality or complexity of one or two key concepts or ideas, and to articulate relatively complex relationships between central concepts.

Knowledge is shallow or superficial in a task when it does not require students to address significant concepts or key ideas of a topic or subject, and when concepts or ideas are fragmented and disconnected from the central focus.

Coding scale

To what extent does the task focus on a number of key concepts within topics, subjects or KLAs, and require clear articulation of the relationships between and among concepts?

<table>
<thead>
<tr>
<th>Deep knowledge</th>
<th>1. The task does not require students to address significant concepts or ideas.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. The task requires students to address some key concepts and ideas, but only at a superficial level.</td>
</tr>
<tr>
<td></td>
<td>3. The task requires students to address a significant idea, but in general students are not required to sustain a focus on key concepts and ideas.</td>
</tr>
<tr>
<td></td>
<td>4. The task requires sustained focus on key concepts or ideas, but does not require articulation of the relationships between and among concepts.</td>
</tr>
<tr>
<td></td>
<td>5. The task requires sustained focus on key concepts or ideas and requires clear articulation of the relationships between and among concepts.</td>
</tr>
</tbody>
</table>

Notes

1. The main issue related to deep knowledge is one of quality. Deep knowledge requires curricular content to be organised in such a way that a small set of ideas or concepts (one or two) is clearly established as the focus of the task. A task incorporates deep knowledge when it is structured in such a way that it assists students to develop a clear and deep understanding of the central concepts.

2. In determining whether or not concepts or ideas are “key” concepts, consider their broader meaning. Ask: “Does this concept or idea have significance for a lot of people?” “Does its meaning last over time?” “Does its meaning hold across a wide range of situations?” One of the tasks included in “Continuing the discussion about assessment practice” asks students to use the 3-on-2 situation in sport to their advantage. The deep knowledge lies in recognising the tactical advantage in using open space as a strategic principle in multiple contexts, including non-sporting contexts.

3. In curriculum debates, there has been a strong distinction made between depth and breadth of knowledge, which at times pits one against the other. It is important to recognise that some breadth is necessary in order to achieve depth of knowledge. Consequently, depth in tasks cannot be achieved simply by focusing on “less” content.

4. It is possible for a task to require students to address deep knowledge but require them to demonstrate only superficial understanding.

Suggestions

- Focus tasks on relating central concepts and ideas with other concepts, or to particular contexts, using the task to previously addressed ideas (from other curricular content) to new ideas. Such approaches can be effective in some ways to strengthen the deep knowledge of a task.
- Ensure that the task connects and supports the key concepts being addressed.
- Design tasks that require students to draw content together through the use of key concepts.
- Require students to draw on a wide range of resources to help build deep knowledge. Such resources could include field experts, local community services, the Internet and other multimedia sources.

Two sample coding sheets are provided in the Appendix to assist in the coding process. The sheets can be used to record the scores for each element when reviewing an assessment task.
Using the coding scales

You can use the coding scales in this guide to code assessment materials, with the aim of reflecting on and refining or redeveloping those materials.

Coding scales for use in reflecting on, analysing and redesigning classroom practice (eg lessons, units and modules of work) are provided in a separate document, A classroom practice guide (ACT Department of Education and Training, 2008).

Steps in the coding process

When coding assessment tasks, it is suggested that you follow these four simple steps.

1. Have a copy of this guide and a coding sheet with you. Two different coding sheets can be found in the Appendix.

2. Read and reflect on the assessment task.

3. While reading and reflecting, note down any comments or evidence in relation to the elements of the Quality Teaching model.

4. After you finish reading the task, refer to the guide and go through each element one by one, assigning a score. Refer to any notes you have taken and carefully read the coding scale, then assign a score for each element on your coding sheet.

Assigning a score

When coding assessment tasks, you can score only what you can see in the written task. This is an important concept to remember. In determining scores for each element, you should consider only the evidence in that specific written document. Hence you will be coding a segment of assessment practice.

There will be times when you cannot see evidence of an element in the written task, but are tempted to score the element highly because you assume it will have happened in association with the written material. Despite this, you must score only what you can see.

Similarly, if you do not see evidence of an element at all, you may be tempted to score this element as “not applicable”, rather than a “1”. For the purpose of coding you should always assign a score to each element. A score of “1” may not necessarily reflect poor pedagogy, but rather indicate simply that a particular element was not a feature of the task you coded. However a consistent “1” on any element over time would indicate an area of assessment practice in need of attention.

When you are coding, consider the explanations given for each element, using the descriptions of the scores from 1–5. Where you have difficulty in selecting between two scores, consider whether the minimum conditions of the higher score have been met. If these conditions have not been met, the lower score should be used.

The five points on the coding scale represent distinctions that can be made in terms of the relative presence of the element. These distinctions, however, do not cover every possible way in which the element will manifest itself in assessment material. In these instances you need to return to a judgement about whether the conditions for the higher score are met. If not, you assign the lower score, even if the lower score descriptor does not exactly capture what you are coding.
Using the scores

Discuss your scores with others and reflect on their implications for improving assessment practice. The scores themselves are there to provide the basis for professional reflection, dialogue and development.

The document, *Continuing the discussion about assessment practice* (ACT Department of Education and Training, 2008) provides a range of ideas on how you can use the coding process for professional learning, reflection and dialogue.

Remember:

- It is unrealistic to expect every assessment task to score a “5” on every one of the 14 elements. What is important is that teachers aim to score highly, on average, in all three dimensions in every task.

- High scores are not necessarily achieved by a particular style of assessment or assessment strategy. Rather, high scores require an approach to assessment that is clear about the answers to the following four questions:

 - **What do you want the students to learn?**
 - **Why does that learning matter?**
 - **What are you going to get the students to do (or to produce)?**
 - **How well do you expect them to do it?**

Finally, remember that the purpose of undertaking the coding is to strengthen assessment practice. Obviously, if you are working within a faculty, year group or with an individual within a professional learning program, you would look at a number of tasks over time, as well as analysing units and classroom practice. Each of these activities contributes to the quality of teaching, and it is important to see them all as part of a whole.
Dimension 1: Intellectual quality

Intellectual quality refers to pedagogy focused on producing deep understanding of important, substantive concepts, skills and ideas. Such pedagogy treats knowledge as something that requires active construction and requires students to engage in higher-order thinking and to communicate substantively about what they are learning.

Elements

<table>
<thead>
<tr>
<th>1.1</th>
<th>Deep knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Deep understanding</td>
</tr>
<tr>
<td>1.3</td>
<td>Problematic knowledge</td>
</tr>
<tr>
<td>1.4</td>
<td>Higher-order thinking</td>
</tr>
<tr>
<td>1.5</td>
<td>Metalanguage</td>
</tr>
<tr>
<td>1.6</td>
<td>Substantive communication</td>
</tr>
</tbody>
</table>
1.1 Deep knowledge

Description
Knowledge is deep when it concerns the central ideas or concepts of a topic or subject and when the knowledge is judged to be crucial to the topic or subject. Deep knowledge is evident in a task when students are required to address the centrality or complexity of one or two key concepts or ideas, and to articulate relatively complex relationships between central concepts.

Knowledge is shallow or superficial in a task when it does not require students to address significant concepts or key ideas of a topic or subject, and when concepts or ideas are fragmented and disconnected from the central focus.

Coding scale

To what extent does the task focus on a number of key concepts within topics, subjects or KLAs, and require clear articulation of the relationships between and among concepts?

Deep knowledge

1. The task does not require students to address significant concepts or ideas.
2. The task requires students to address some key concepts and ideas, but only at a superficial level.
3. The task requires students to address a significant idea, but in general students are not required to sustain a focus on key concepts and ideas.
4. The task requires sustained focus on key concepts or ideas, but does not require articulation of the relationships between and among concepts.
5. The task requires sustained focus on key concepts and ideas and requires clear articulation of the relationships between and among concepts.
INTELLECTUAL QUALITY

Notes

1. The main issue related to deep knowledge is one of quality. Deep knowledge requires curriculum content to be organised in such a way that a small set of ideas or concepts (one or two) is clearly established as the focus of the task. A task incorporates deep knowledge when it is structured in such a way that it assists students to develop a coherent and purposeful response around a few key concepts.

2. In determining whether or not concepts or ideas are ‘key’ concepts, consider their broader meaning. Ask: “Does this concept or idea have significance for a lot of people?”; “Has its meaning lasted over time?”; “Does its meaning hold across a wide range of locations?” One of the tasks included in Continuing the discussion about assessment practice asks students to use the 3-on-2 situation in sport to their advantage. The deep knowledge lies in recognising the tactical advantage in using open space as a strategic principle in multiple contexts, including non-sporting contexts.

3. In curriculum debates, there has been a strong distinction made between depth and breadth of knowledge, which at times pits one against the other. It is important to recognise that some breadth is necessary in order to achieve depth of knowledge. Consequently, depth in tasks cannot be achieved simply by focusing on “less” content.

4. It is possible for a task to require students to address deep knowledge but require them to demonstrate only superficial understanding.

Suggestions

- Focus tasks on relating central concepts and ideas with other concepts, or to particular contexts. Linking the task to previously addressed ideas (from either prior classwork or other tasks) or to new, as yet unexplored, concepts or contexts are two ways to strengthen the deep knowledge of a task.

- Ensure that the task connects and supports the key concepts being addressed.

- Design tasks that require students to draw content together through the use of key concepts.

- Require students to draw carefully on a wide range of resources to help build deep knowledge. Such resources could include field experts, local community services, the Internet and other multimedia sources.
1.2 Deep understanding

Description

Deep understanding is evident in a task when students are required to provide information, arguments or reasoning that demonstrate their grasp of central ideas and concepts. Tasks that are high in deep understanding are likely to require students to explore relationships, solve problems, construct explanations and draw conclusions in relatively systematic, integrated or complex ways in relation to the central ideas or concepts.

Understanding is shallow or superficial in a task when students are required only to present ideas in a limited or narrow way. Tasks that require students to repeat fragmented pieces of information, perform routine operations or provide limited interpretations without making clear distinctions, solving problems or demonstrating complex understandings, will allow them to demonstrate only superficial understanding of their learning.

Coding scale

To what extent does the task require students to demonstrate deep rather than superficial understanding of their learning?

<table>
<thead>
<tr>
<th>Deep understanding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The task requires students to demonstrate only shallow understanding.</td>
</tr>
<tr>
<td>2</td>
<td>The task mostly requires students to demonstrate only shallow understanding, with one or two minor exceptions.</td>
</tr>
<tr>
<td>3</td>
<td>The task requires both deep and shallow understanding at different points.</td>
</tr>
<tr>
<td>4</td>
<td>A substantial part of the task requires students to provide information, arguments or reasoning that demonstrate deep understanding.</td>
</tr>
<tr>
<td>5</td>
<td>The entire task requires students to provide information, arguments or reasoning that demonstrate deep understanding.</td>
</tr>
</tbody>
</table>
Notes

1. The essential difference between deep knowledge and deep understanding is that deep knowledge is about the knowledge that students are required to address, while deep understanding is about the learning that students are required to demonstrate.

2. Understanding can be demonstrated in oral, written, symbolic or performance modes; what is important is that opportunities for students to engage actively with the knowledge are built into the task. Opportunities for students to demonstrate their understanding include requiring them to explore relationships, solve problems, construct explanations and draw conclusions.

3. Coding tasks for deep understanding may require depth of knowledge of the specialist content on the part of the coder.

4. It is possible for a task to require students to focus on complex concepts and ideas while showing only superficial understanding. For example, tasks about central ideas that require deep knowledge do not always require students to demonstrate deep understanding of those ideas, but allow students to mimic or recall knowledge in ways that demonstrate only shallow understanding.

Suggestions

- Allow students sufficient time on the task to enable them to demonstrate deep understanding.
- Structure the task so that students are required to demonstrate explicitly the links between concepts, ideas, facts, personal experiences and perspectives.
- Focus both formative and summative tasks on deep understanding.
1.3 Problematic knowledge

Description
Knowledge is treated as problematic in a task when it requires students to treat knowledge not as a fixed body of information, but rather as being socially constructed, and hence subject to political, social and cultural influences and implications. A task high on problematic knowledge will require students to present multiple, contrasting and potentially conflicting forms of knowledge and recognise them as constructed and open to question.

Knowledge is not treated as problematic when the task requires students to treat knowledge only as fact, a body of truth to be acquired. A task low in knowledge as problematic will require students to treat knowledge as static and open to only one interpretation.

Coding scale

To what extent does the task require students to present or analyse alternative perspectives and/or solutions and to demonstrate how the construction of knowledge relates to their understanding of the task?

<table>
<thead>
<tr>
<th>Problematic knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The task requires all knowledge to be presented only as fact and not open to question.</td>
</tr>
<tr>
<td>2. The task requires some knowledge to be treated as open to question.</td>
</tr>
<tr>
<td>3. The task requires knowledge to be treated as socially constructed, with multiple perspectives addressed.</td>
</tr>
<tr>
<td>4. The task requires knowledge to be treated as socially constructed, with multiple perspectives not only presented but explored through questioning of their basic assumptions.</td>
</tr>
<tr>
<td>5. The task requires knowledge to be treated as socially constructed, with multiple and/or conflicting interpretations presented and explored to the extent that a judgement is made about the appropriateness of an interpretation in a given context.</td>
</tr>
</tbody>
</table>
Notes

1. Arguing a point of view, as in a debate or a discussion paper, can aid in demonstrating that knowledge is problematic. Debates, however, do not necessarily lead to understanding the problematic nature of knowledge, unless the opposing views are analysed in such a way as to interrogate the political, social and cultural assumptions on which the views are based.

2. Similarly, the expression of personal opinions or differing views do not in themselves demonstrate problematic knowledge, unless the knowledge on which these views or opinions are based is open to query, and is analysed as problematic (constructed and open to question).

3. It is important to recognise that understanding knowledge as problematic is not restricted to more mature students. Kindergarten students can be introduced to the idea of knowledge as problematic. For example, in talking about *me and my family*, they can see that families mean different things to different people (one, two or many parents; no siblings or many; extended family or nuclear) and that the notion of family depends on the circumstances.

Suggestions

- Ask students to provide alternative solutions as an initial step in recognising the problematic nature of knowledge.
- Construct tasks so that students are required to explore the assumptions underpinning a variety of perspectives when presenting a theme or topic.
- In designing tasks, include opportunities for students to construct their own knowledge, for example by conducting science experiments or engaging in other problem solving activities and examining the assumptions on which their solutions are based.
- Include in the task questions which require students to discuss and identify how knowledge is viewed or constructed differently over time and by different groups, such as: *Why is this so? Whose point of view is expressed? Whose knowledge is this? Who is advantaged? Who is disadvantaged? How has this view changed over time? Whose views are left out?*
- In the task, require students to explore what the central concept may mean to a range of cultural groups, and how that meaning may have changed over time.
- In the task, require students to challenge and question knowledge to identify bias or to question what counts as knowledge, what the nature of knowledge is, and what knowledge is of most worth.
1.4 Higher-order thinking

Description
A task high on higher-order thinking requires students to manipulate information and ideas in ways that transform their meaning and implications. This transformation occurs when students combine facts and ideas in order to synthesise, generalise, explain, hypothesise or arrive at some conclusion or interpretation. Tasks which require students to manipulate information and ideas to solve problems and create (for them) new meanings and understandings will be high in higher-order thinking. When students are required to engage in higher-order thinking, they may generate unexpected concepts, ideas and products.

A task low on higher-order thinking requires students to deal only with factual information or to engage in repetitive activity. Tasks which require students to recall information, define, describe, identify, list, or reproduce given content knowledge or to perform routine procedures are addressing only lower-order thinking.

Coding scale
To what extent does the task require students to organise, reorganise, apply, analyse, synthesise and evaluate knowledge and information?

Higher-order thinking

1. The task requires students to demonstrate only lower-order thinking.

2. The task requires predominantly lower-order thinking, but at some point students are required to demonstrate higher-order thinking as a minor diversion.

3. The task requires predominantly lower-order thinking, but there is at least one significant question or activity which requires students to demonstrate higher-order thinking.

4. A substantial portion of the task requires students to demonstrate higher-order thinking.

5. Throughout the task students are required to demonstrate higher-order thinking.
Notes

1. It is important to note that the relationship between higher-order thinking and depth is complementary, but not simple. Lower-order thinking is essential for building the foundations for understanding; however, unless there are opportunities to engage in higher-order thinking, it is unlikely that students will demonstrate deep understanding of a concept. That is, a task which requires students to use processes for higher-order thinking will allow students to demonstrate deep understanding only if the ideas being addressed are substantive and relevant to the purpose of the task.

2. Thinking does not necessarily become higher-order when the complexity of the task increases. For example, when students need only to follow pre-specified steps and routines or employ algorithms or write variations on sentence patterns in a rote fashion, they are engaging in lower-order thinking.

3. Tasks that involve preparation for performance, role-play, or moves in sport will require higher-order thinking if students are required to engage in problem-solving in order to create a different or improved result.

Suggestions

• Bloom’s Taxonomy is a useful guide when you are framing higher-order questions and tasks.

• Provide opportunities for students to:
 - construct meaning from information (by classifying, summarising, inferring, comparing, or explaining)
 - separate information (or procedures or techniques) into parts and determine how the parts relate to one another and/or how they relate to an overall purpose or structure (such as when students analyse, compare, contrast, organise, distinguish, examine, illustrate, point out, relate, explain, or differentiate content)
 - make judgements based on criteria and/or standards (such as when students evaluate, comment on, check, criticise, judge, critique, discriminate, justify, or interpret content)
 - put elements together to form a coherent or functional whole, or reorganise elements into a new pattern (such as when students combine, create, design, plan, rearrange, reconstruct, generate, or produce).

• Pose questions that can have multiple answers or possibilities and ask students to justify their responses or evaluate information from a variety of sources.

• Extend student responses beyond simple recall by constructing layered questions such as: How does this compare with your previous responses? and What might be the result if you changed the context?

• Provide opportunities for students to evaluate, manipulate and transform information, e.g. developing a new product, movement, composition, text or scenario.

• Ensure that every task poses at least one significant question requiring higher-order thinking.

1.5 Metalanguage
Description

A task high in metalanguage requires students to address language and how it works. In such a task, students are required to foreground particular aspects of texts (where *text* refers to communication in any medium which conveys information and ideas, for example written, spoken, visual or symbolic languages). Tasks high in metalanguage will require students to point out how differing sentences, types of texts, discourses and other symbolic representations actually work, to compare and contrast texts, or to explore how language and symbols can be used to construct texts, knowledge and power.

A task low in metalanguage requires no explicit reference to language and language use or to how texts work. The emphasis is on simply completing the task without questioning the structure and function of the language.

Coding scale

To what extent does the assessment task require students to comment on language and how it works?

<table>
<thead>
<tr>
<th>Metalanguage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The task does not require students to refer to or comment on the language being used.</td>
</tr>
<tr>
<td>2</td>
<td>The task requires students to make some reference to language, but not to how it works.</td>
</tr>
<tr>
<td>3</td>
<td>The task requires students to make some reference to language and how it works.</td>
</tr>
<tr>
<td>4</td>
<td>The task requires students to make substantial reference to language and how it works.</td>
</tr>
<tr>
<td>5</td>
<td>The task requires students to make substantial reference to, and complex comments on, language and how it works.</td>
</tr>
</tbody>
</table>

Notes
1. Using the specialist terminology of KLAs and subjects is not in itself metalanguage. At the simplest level of metalanguage, a task may require students to define specialist terminology in their own words. More advanced uses of metalanguage would include consideration of how the language (or symbol system) being analysed works to structure meaning in particular ways, for instance how emotive words help construct a point of view.

2. It is important to note that symbol systems (musical notation, scientific and mathematical equations, etc) operate as forms of language when they structure meaning. Language about, or commentary on, how these symbolic systems function can be considered metalanguage.

3. Visual codes are also language systems that structure meaning. Many subjects use films, graphics, design, performance such as dance, or works of art as part of teaching and learning. Teachers can set tasks that require students to articulate and reflect on how images work to construct meaning.

Suggestions:

- Design tasks that require students to explain how they have used particular terms in their response.
- Where appropriate include specific questions about language use in a task: for example, *How does the language used in the extract affect your interpretation, and why?* or *How does the language/symbol system used in the extract/performance/formula reflect the attitude of particular groups or ideologies?*
- Set tasks that require students to use and comment on visual representations, for example artworks or scenes from a film.
- Where appropriate, have students explain the language choices they made in their responses, for example the use of technical language to make a science report more precise, the use of emotive language to make an argument appeal to a reader, the use of particular arm movements in a dance to signify strength.

1.6 Substantive communication
Description

This element identifies the quality of communication (oral, written or symbolic) required to promote coherent understanding. A task scoring highly for substantive communication will require students to elaborate their arguments and/or explanations, providing an extended response which focuses on the key concepts of the topic.

A task which requires little or no substantive communication may consist of single-answer questions, simple multiple choice questions, or the presentation of a product without any elaboration.

Coding scale

To what extent does the task require students to elaborate their understanding in a sustained and substantive fashion?

<table>
<thead>
<tr>
<th>Substantive communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The task requires no substantive communication.</td>
</tr>
<tr>
<td>2 The task requires students to communicate their knowledge of the topic or idea through brief responses, which demand no elaboration.</td>
</tr>
<tr>
<td>3 The task requires students only to present ideas, concepts or arguments related to the topic, rather than an elaboration of their understanding of them.</td>
</tr>
<tr>
<td>4 The task requires students to present some sustained clarification of the ideas, concepts or arguments related to the substance of the topic.</td>
</tr>
<tr>
<td>5 The task requires students to produce an elaborate, sustained and coherent clarification of complex ideas, concepts or arguments directly related to the substance of the topic.</td>
</tr>
</tbody>
</table>

Notes

1. Substantive communication can be oral, written, non-verbal or symbolic. In a symbolic
language such as mathematics, the communication may include the explanation of different approaches to a number solution or an elaboration of the algebraic processes required to reach particular conclusions. In dance, the communication may include the physical demonstration of the merits of a variety of solutions to a problem or the factors aiding or hindering the development of a particular solution.

2. Substantive communication in relation to assessment tasks has the following characteristics:
 • It is **sustained**; that is, the communication continues a thought or idea beyond simple question and answer, by developing a logical extension or synthesis through a line of reasoning.
 • The communication is focused on the **substance** of the task. It moves beyond the mere recounting of experiences, facts, definitions or procedures to critical reasoning such as making distinctions, applying ideas, forming generalisations and raising questions.

3. In a group task, the focus may be on the way in which a point of discussion is taken up by others and on the overall flow of information and ideas being at least two-way in direction.

Suggestions

• Set a task of sufficient length to require an elaborate response from students.
• Set tasks based on open-ended questions that require students to give more than yes/no answers.
• Structure tasks to extend communication by having students read or view and react to each other’s writing, artworks or performances.
Dimension 2: Quality learning environment

Quality learning environment refers to pedagogy that creates classrooms where students and teachers work productively in an environment clearly focused on learning. Such pedagogy sets high and explicit expectations and develops positive relationships between teachers and students and among students.

<table>
<thead>
<tr>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Explicit quality criteria</td>
</tr>
<tr>
<td>2.3 High expectations</td>
</tr>
<tr>
<td>2.6 Student direction</td>
</tr>
</tbody>
</table>

Note: *Engagement, Social support* and *Students’ self-regulation* are not included as coding elements for assessing tasks as they will be observed only in the context of the implementation of the task, and therefore are best observed as elements of classroom practice.
2.1 Explicit quality criteria

Description
High explicit quality criteria in a task is identified by detailed and specific statements about the quality of work required of students. Explicit quality criteria become a reference point for assessing student work when it is clear how those criteria will be used to assess students’ work.

Low explicit quality criteria in a task is identified by an absence of written reference to the quality of work expected of students. Reference to technical or procedural requirements only (such as the number of examples, the length of an essay or the duration of a presentation) is not evidence of explicit quality criteria.

Coding scale

To what extent does the task provide explicit criteria for the quality of work which students are expected to produce, and use those criteria as a reference point for assessing the students’ work?

Explicit quality criteria

1. No explicit statements regarding the quality of work are made. Only technical and procedural criteria are made explicit.

2. Only vague statements are made regarding the desired quality of work.

3. Clear statements are made regarding the quality of work, but there is little elaboration of what it means to do well.

4. Clear statements are made regarding the quality of work and there is some elaboration of what it means to do well.

5. Statements regarding the quality of work are made explicit and it is clear how these criteria will be used in assessing students’ work.
Notes

1. Designating what students are to do in order to complete a task does not by itself clarify what counts as high quality work. Merely outlining what students are supposed to complete is procedural. Explicit quality criteria, on the other hand, clarify for all students what the teacher expects in terms of high-quality completion of a task.

2. Modelling of a task by the teacher does not constitute clear quality criteria as students may merely mimic what they have observed. However joint construction with the teacher, or within a group of students, where students are engaged in producing their own model of what constitutes a high-quality response to a task, can be regarded as high in explicit quality criteria.

3. In some practical creative tasks, it may not be possible to develop explicit quality criteria for particulars of the required product, as students may create their own work by determining the style, genre and materials they select. However, it is still possible to provide some general criteria which may be refined as the students develop their work.

4. While the coding scale places value on the articulation of detailed criteria, simply listing detailed criteria may not give a full picture of what constitutes high-quality work. For instance, at times when the “whole is greater than the sum of the parts”, it may be useful to clarify the difference between a holistic impression in contrast to a point by point analysis. In the construction of a holistic grading rubric associated with a set of marking criteria, clear connections should be made between the elements within a rubric and the separate criteria. Holistic rubrics should make clear how credit is given to the components within the rubric.

Suggestions

- As you design the task, keep in mind the questions: What do I expect the students to produce? and How well do I expect them to do it?

- When devising rubrics for assessment, consider whether the criteria refer to the quality of the work explicitly, or merely give procedural or technical instructions.

- Involve students in the joint construction of clear criteria that explicitly describe the quality of work expected for the task. If the students have some control over the development of the assessment rubric they may have a greater understanding of what quality means.

- Use the criteria to assess students’ work and to provide feedback during development, as well as on completion of the task.

- Provide annotated exemplars, work samples or models that illustrate high-quality student performance based on the criteria. These exemplars could be in the form of work from past students or from other sources.

- Be clear about what counts as a high-quality performance and communicate these criteria clearly, so that all students know what quality work looks like, rather than spending lots of time articulating different bands or levels of performance.
2.3 High expectations

Description

Expectations are high when a task presents challenges to all students through the kind and level of material selected. High expectations are set when a task encourages and rewards students for taking conceptual or other risks in demonstrating their learning, whether the challenge of the task is intellectual, physical or performance-based.

Expectations are low when a task demands little of students in terms of conceptual challenge or risk-taking. An assessment task which implies that some students will be unable to complete the work also delivers low expectations.

Coding scale

To what extent does the task communicate high expectations of all students and encourage students to take conceptual risks?

<table>
<thead>
<tr>
<th>High expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The task does not require students to participate in any challenging work.</td>
</tr>
<tr>
<td>2 The task presents some challenging work for some students.</td>
</tr>
<tr>
<td>3 The task presents some challenging work for most students.</td>
</tr>
<tr>
<td>4 The task presents a serious challenge for all students.</td>
</tr>
<tr>
<td>5 The task presents serious challenges to all students, and encourages them to take risks in demonstrating their learning.</td>
</tr>
</tbody>
</table>
Quality Learning Environment

Notes

1. High expectations is not about the scope or size of the task, but about the degree to which all students are required to engage in challenging work.

2. Where a task includes differing expectations of performance, it is important that these are communicated in such a way that all students can attempt the highest level of challenge and receive recognition for their achievements.

3. Teachers who view intelligence as dynamic and fluid, rather than as static and unchanging, are less likely to have rigid preconceived notions about what students will or will not be able to achieve.

4. When teachers and school leaders maintain high expectations through the tasks that are set, they encourage in students a desire to aim high rather than to merely get by. To expect less is to do students a disservice, not a favour.

5. Research has shown that teachers’ expectations for students tend to be self-fulfilling. That is why Jere Brophy (1998, cited in the Annotated Bibliography, 2008) advises teachers to always treat students as enthusiastic learners, if they want them to become enthusiastic learners.

Suggestions

• Ask yourself: What do I want the students to do to achieve deep understanding or to demonstrate their learning? and How well do I expect them to do it?

• Set tasks that require students to take conceptual risks by critically evaluating the substance (assumptions, knowledge claims, values, forms of evidence, etc) addressed in the task or the task itself.

• For preschool to year 10 teachers, refer to the essential content and markers of progress set out in the ACT curriculum framework (P-10), and in student work samples (if available), to develop a clear understanding of the expectations for the students’ current band of development, and for the band beyond.

For years 11 and 12 teachers, refer to the essential concepts and skills and unit grade descriptors in ACT BSSS course frameworks, and in student work samples (if available through moderation processes).

• Reflect on and challenge your own assumptions and preconceptions about the capacities of individual students to engage in challenging work.
2.6 Student direction

Description

A task with high student direction has students exercising control over one or more of the following significant aspects of a task:

- **choice** of activities to be included in the task
- **time** spent on the task
- **pace** at which the task is completed
- **criteria** by which they will be assessed.

When a task requires students to assume responsibility for the activities in which they engage, and/or how they complete them, the activities are likely to be student-centred (e.g. group work, individual research and practical investigation projects).

A task with low student direction has no input from students into the design of the task. The teacher explicitly determines what activities constitute the task, how and when the task is to be completed, and the criteria by which the task will be assessed.

Coding scale

To what extent is the task designed so that students exercise some direction over the selection of activities related to their learning and the means and manner by which these activities will be done?

<table>
<thead>
<tr>
<th>Student direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All aspects of the task are explicitly designated by the teacher for students.</td>
</tr>
<tr>
<td>2. Although students are given some control over some aspect of the task (choice, time, pace, assessment), their control is minimal or trivial.</td>
</tr>
<tr>
<td>3. Students are able to exercise some control in relation to at least one significant aspect of the task.</td>
</tr>
<tr>
<td>4. The task gives students substantial control, with negotiation possible over at least some significant aspects of the task.</td>
</tr>
<tr>
<td>5. Students determine many significant aspects of the task either independent of, or dependent on, teacher approval.</td>
</tr>
</tbody>
</table>
Quality Learning Environment

Notes

1. The element of student direction is not about teachers relinquishing their responsibility for helping students to demonstrate their learning. Rather this element acknowledges the importance of teachers providing opportunities for students to exercise control over one or more of four aspects:

 - **Choice** of activities: Students have some opportunities to select from a range of activities, or to choose the topic or focus of an activity, or the way in which they might undertake an activity, the sources of information they might draw upon or the method of presentation.
 - **Time** spent on activities: Students have an opportunity to exercise control over the time spent on activities, deciding or negotiating how much time they require to complete an activity.
 - **Pace** of completion: Students have the opportunity to exercise control over how quickly they complete their work.
 - **Criteria** by which they will be assessed: Students have opportunities to negotiate or contribute to determining the criteria by which they will be assessed.

2. In designing tasks, teachers will have different scope to provide opportunities for students to exercise control over these four aspects, depending on the subject they are teaching or the stage of their students. For example, while college teachers of T courses may not have as much latitude in determining the content and assessment criteria as teachers of A and R courses, there are still ways in which students can take responsibility for overall pacing issues, or for deciding the form of assessment tasks or their responses to such tasks.

Suggestions

- Incorporate scaffolded choices within tasks, e.g. tiered activities with multiple entry and exit points, so that students can determine where they begin and what challenges they can meet.
- Negotiate tasks and be open to ideas suggested by students. Ask students: *How can you show that you understand this? What might be produced as a result of this learning?*
- Provide multiple pathways for students to demonstrate and teachers to assess learning outcomes, e.g. logbooks, presentations, performances, reflective journals, portfolios, models and online products.
- Allow students to demonstrate their learning in different ways; for example, a biography could be presented as written text or as a timeline.
Dimension 3: Significance

Significance refers to pedagogy that helps make learning more meaningful and important to students. Such pedagogy draws clear connections with students’ prior knowledge and identities, with contexts outside of the classroom, and with multiple ways of knowing or cultural perspectives.

<table>
<thead>
<tr>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>3.6</td>
</tr>
</tbody>
</table>

Note: Inclusivity is not included as a coding element for assessing tasks as it will be observed only in the context of the implementation of the task, and therefore is best observed as an element of classroom practice.
3.1 Background knowledge

Description

High background knowledge is evident when a task provides students with opportunities to make connections between their prior knowledge and experience and the content, skills and competencies being assessed. Background knowledge may include prior school knowledge, or it may include ‘out-of-school’ knowledge, such as local knowledge, cultural knowledge, personal experience and knowledge of media and popular culture.

Low background knowledge is evident when a task addresses new content, skills and competencies without providing any opportunities for students to incorporate their prior knowledge of the topic, and when the task does not draw upon relevant or key background knowledge that might enhance students’ comprehension and understanding of the new knowledge.

Coding scale

To what extent does the assessment task draw upon students’ background knowledge, and require students to make links between prior knowledge and new knowledge?

<table>
<thead>
<tr>
<th>Background knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Notes

1. Students’ background knowledge can come from just about anywhere – from their individual experiences, their prior learning (in or out of school), knowledge obtained within their own families and communities and from their experiences of work. The main focus of this element is whether or not the background knowledge of students in the class is valued and linked with the substance of the task.

2. Background knowledge will differ for students in a group, so when designing a task which incorporates such knowledge, teachers should not make assumptions that all students will be familiar with the same background knowledge. This is true for both in-school and out-of-school background knowledge.

3. Eliciting background knowledge does not necessarily require explicit mention of prior knowledge; it can be implied.

Suggestions

- In designing a task, draw direct connections with prior school knowledge that students might utilise in completing the task.
- Require students to draw direct connections between prior school work and the task.
- Incorporate background knowledge in tasks through reference to family, community, previous experience and popular culture.
- Construct tasks that require students to substantially draw on knowledge they have gained in out-of-school contexts. Given the different background knowledge that students in a group would bring to a task, such tasks would require that students have some control over the substance they bring to the task.
3.2 Cultural knowledge

Description
A task has high levels of cultural knowledge when it recognises claims to knowledge from non-dominant social groups in an authentic, detailed and profound manner. Different social groups are identified in relation to the dominant Australian culture and are distinguished by such characteristics as socio-economic status, gender, ethnicity, race, age, sexuality, disability, language and religion.

A task has low levels of cultural knowledge when the dominant culture is regarded as the only source of acceptable knowledge and there is little or no recognition of the knowledge, skills and understandings of non-dominant social groups. Cultural knowledge in a task is also low when it is used simply to compare social groups, based on superficial characteristics.

Coding scale

To what degree is the cultural knowledge of non-dominant social groups incorporated and valued in the task?

<table>
<thead>
<tr>
<th>Cultural knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Notes

1. The element of cultural knowledge concerns the recognition and valuing of the knowledge of different social groups, whereas the element of inclusivity (refer to A classroom practice guide) refers specifically to recognising and valuing students from diverse social groups in the class. Hence, tasks can be assessed for cultural knowledge, regardless of the diversity or homogeneity of the class.

2. Cultural knowledge defines features of social groups which people sometimes use to identify themselves as part of a particular social group. While some social groups experience prejudice and disadvantage, cultural knowledge is not an indicator of disadvantage, but rather a valuable resource upon which teachers can build learning. For example, the inclusion of Indigenous cultural knowledge in KLAs and subjects strengthens the understanding by all students that social groups represent knowledge in different rather than “lesser” ways.

3. The term “culture” is used here in a broad sense to include markers of cultural difference within Australian society. In this sense, it would be possible to consider more groups than those listed above as being sources of cultural knowledge. For example, people living in rural and remote areas will have specific knowledge of Australia and its institutions that is recognisable as cultural knowledge.

4. Tokenistic or contrived inclusions of cultural knowledge are to be avoided as they can be self-defeating. There are plenty of opportunities to incorporate cultural knowledge in the assessment tasks of KLAs and subjects. Recognition of cultural knowledge can be legitimately incorporated in order to strengthen the substance of the assessment task, such as recognising the Middle-Eastern origins of our number system or the non-Western origins of parliamentary systems of government, or acknowledging multiple family structures as legitimate and equally valuable.

Suggestions

- In designing tasks, provide opportunities for students to look beyond stereotypes used to describe different social groups.
- Require students to refer to knowledge from more than one social group when addressing a particular issue and, where available, to use resources endorsed by those social groups.
- Require students to reconsider their work or ideas from a cultural viewpoint different from their own, such as socio-economic status, gender, age or disability.
- Require students to respond to an issue or design a strategy or product for a particular social group, and to elaborate their considerations.
3.3 Knowledge integration

Description
A task includes high knowledge integration when students are required to make meaningful connections between different subjects or KLAs. For instance, when students are asked to address themes or problems which require knowledge from multiple subject areas or KLAs, knowledge integration will be high.

In a task with low knowledge integration, students are not required to make meaningful connections between different subjects or KLAs. When knowledge boundaries are too narrowly defined, opportunities for students to demonstrate meaningful connections between subject areas or KLAs may be lost.

Coding scale

To what degree does the task integrate knowledge between subjects or key learning areas?

<table>
<thead>
<tr>
<th>Knowledge integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The task requires no meaningful connections. All knowledge required for the task is restricted to that explicitly defined within a single subject area.</td>
</tr>
<tr>
<td>2 The task requires students to make some minor or trivial connections, but knowledge is mostly confined to that of a specific subject area.</td>
</tr>
<tr>
<td>3 The task requires students to make at least one meaningful connection between subject areas.</td>
</tr>
<tr>
<td>4 The task requires students to make several meaningful connections between subject areas.</td>
</tr>
<tr>
<td>5 The task requires students to make substantial and meaningful connections between subject areas.</td>
</tr>
</tbody>
</table>
Significance

Notes

1. It is important to recognise that the element of knowledge integration assumes that the task will assess knowledge from different disciplinary bases. To say that meaningful connections are made between subject areas implies that subject knowledge must be present. That is, while the integration of subjects is a means of developing significance, it is important not to lose sight of just what is being integrated. An assessment task which requires integration of knowledge, understandings and skills from other subject areas gives students the opportunity to demonstrate enhanced learning only if this integration contributes to the deep understanding of core concepts.

2. Thematic or problem-based curricula do not necessarily produce knowledge integration. They can result in a series of loosely connected activities which neither deepen the understanding of particular subjects nor illuminate the connections between them.

3. The interdisciplinary Essential Learning Achievements (ELAs) in the ACT curriculum framework provide explicit contexts in which meaningful connections between knowledge from different subject areas can be required in an assessment task. However, a cross-curricular design for a task will not guarantee that knowledge integration will be meaningful.

Suggestions

- Plan integrated tasks using identified content from more than one KLA or subject, where appropriate. This would involve identifying the significant concepts of each KLA or subject and ensuring that the assessment task provides opportunities to demonstrate achievement of all identified learning outcomes.

- Require students to draw directly on knowledge gained in another subject area. Where possible, base such requirements on your own knowledge of what students are learning in other KLAs (that is, meet with colleagues in band or year level teams to link learning outcomes).
3.5 Connectedness

Description
High connectedness is evident when a task has value and meaning beyond the classroom and school. An assessment task exhibits high connectedness by addressing either a public problem or actual experiences or situations that students will confront. A task shows a high degree of connectedness when it requires students to interact with an audience beyond the classroom by communicating knowledge to others (including within the school). For example, tasks which require students to advocate solutions to social problems, to provide assistance to people, or to create performances or products and explore their utilitarian or aesthetic value, would rate highly on connectedness.

An assessment task with little or no connectedness is deemed important for success only in school (now or later), but for no other aspects of life. Such a task has no impact on others and serves only to certify the students’ level of competence or their compliance with the norms and routines of formal schooling.

Coding scale

To what degree does the task require students to apply knowledge to real-life contexts or problems and provide opportunities for students to relate their work to situations beyond the classroom?

Connectedness

1. The task has no clear connection to anything beyond itself. No justification is offered for the task beyond school requirements.

2. The task attempts to connect student learning with the world beyond the classroom, but the connection is weak and superficial or trivial.

3. The task is based around some connection to the world outside the classroom, but the task does not require students to explore the implications of these connections, which remain largely abstract or hypothetical.

4. The task requires students to recognise and explore connections between classroom knowledge and situations outside the classroom in ways that create personal meaning and highlight the significance of the knowledge. The task may include opportunities to influence an audience beyond the classroom.

5. The task requires students to recognise and explore connections between classroom knowledge and situations outside the classroom in ways that create personal meaning and highlight the significance of the knowledge. The task requires students to engage with and/or influence an audience beyond the classroom.
Significance

Notes

1. Connectedness is higher when students not only share their work with an audience beyond the classroom and the school, but are required to explore the meaning and significance of having that audience, or the meaning of their work for that audience. Tasks highest in connectedness ensure that dialogue with external audiences is required, rather than hypothetical or contrived.

2. Influencing an audience beyond the classroom does not mean simply exhibiting students’ work outside the classroom. Authentic examples of influencing an audience include: writing letters to the school principal, editors of papers or Government representatives; presenting submissions and reports to local government or senate inquiries; and undertaking community projects, such as environmental recycling projects, or designing health promotion programs for members of the local community or state government.

Suggestions

- In designing the task (especially when students have some direction over the task design) ask questions of students such as:
 - *When would you need to know this?*
 - *Why are we studying this?*
 - *Who might be an appropriate audience for our work?*

- Design the assessment task so that students are required to comment on the links between the significant concepts being investigated and their own lives.

- When possible, select for the assessment task aspects of the topic which are more readily applied to contexts outside the school.

- Link tasks to current issues in the local community, media or popular culture.

- Encourage students to draw on resources beyond the classroom, such as the Internet, local community people and resources, and the media.

- Where applicable, require students to explore the meaning and significance of the audience for their work as part of the task.
3.6 Narrative

Description

Use of narrative is high in a task when the stories which the students are required to read, listen to, view, write or tell help to illustrate or bring to life the knowledge they are addressing. An assessment task high in narrative may itself take the form of a story, or may require students to respond using a narrative form. Narratives may include personal stories, biographies, historical accounts, case studies, literary and cultural texts and performances. Narrative may be high in a task if there is only one narrative presented, as long as that narrative enhances the significance of the task.

Use of narrative is low in a task when students are not required to read, listen to, view, write or tell stories, or when the stories used are disconnected from the substance of the task. Narrative will also be low if stories are used in ways that detract from the requirements of the task and do not assist students to demonstrate their learning.

Coding scale

To what extent does the task employ narrative to enrich student understanding?

<table>
<thead>
<tr>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Notes

1. Tasks can employ narrative as **content** (e.g. when the task material is presented in a narrative form) or as **process** (e.g. when students are required to write, tell, perform or illustrate their stories).

2. The use of “narrative” as a label for this element differs from the use of the term “narrative” as a text type. When used to define a text type, narrative refers to the structures and functions of a particular use of language. As used here, narrative refers broadly to the use of stories to help bring alive the substance of the topic.

3. Narrative is a powerful tool for learning. An assessment task may include a narrative that aptly illustrates a key concept of the topic, and which can be referred to throughout the student response. Students can demonstrate their understanding in an assessment task by structuring their own experiences or newly acquired knowledge in a narrative form. To be significant, however, the narrative must connect to and support the key concepts of the task.

4. Encouraging the use of relevant personal experiences or imagined stories in response to assessment tasks can assist those students who are less skilled in using abstract constructs to demonstrate their understanding.

Suggestions

- Recognise and use multiple sources of stories, such as histories, biographies, autobiographies, documentaries, personal accounts, case studies, field reports and guest speakers, where appropriate and related to the substance of the task.
- Plan a variety of opportunities for students to construct their own stories related to the substance of the task, e.g. journal writing, diary entries, reflective journals, portfolios, email, chat room, scenarios, case studies and performances.
Appendix

Coding sheets
Coding sheets

Two sample coding sheets are provided. These can be used to record the scores for each element following reading and reflecting on an assessment task.

The first coding sheet allows you to record your score by circling a number from 1 to 5. When using this sheet you may find it useful to jot down any comments or evidence in relation to the elements of the Quality Teaching model on the back of the sheet or on a separate piece of paper.

The second coding sheet provides space for you to record any comments or evidence and then write in your score.

In using both coding sheets you would determine your score only after referring to the coding scales in this guide.
Coding sheet

Year/Class: __________________________ KLA/Subject: __________________________

Task: ______________________________

Intellectual quality

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Deep knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Deep understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Problematic knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Higher-order thinking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Metalanguage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Substantive communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality learning environment

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Explicit quality criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 High expectations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Student direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Background knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Cultural knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Knowledge integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Connectedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 Narrative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coding sheet

Year/Class: ___________ KLA/Subject: ________________ Task: ________________________

<table>
<thead>
<tr>
<th>Element</th>
<th>Evidence: Coding notes</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Deep knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Deep understanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Problematic knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Higher-order thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Metalanguage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Substantive communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Explicit quality criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 High expectations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Student direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Background knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Cultural knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Knowledge integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Connectedness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 Narrative</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>